Method of Test for ABRASION OF LIGHTWEIGHT COARSE AGGREGATE DOTD Designation: TR 111-10 ## I. Scope - A. This method covers the procedure for testing lightweight coarse aggregate for resistance to abrasion in the Los Angeles testing machine with an abrasive charge. - B. Reference Documents - 1. AASHTO M 92 Standard Specification for Wire-Cloth Sieves for Testing Purposes - AASHTO T 19 Bulk Density (Unit Weight) and Voids in Aggregate - 3. AASHTO T 96 Resistance to Degradation of Small-Size Coarse Aggregate by Abrasion and Impact in the Los Angeles Machine. - 4. DOTD TR 113 Sieve Analysis of Fine and Coarse Aggregate ### II. Apparatus - A. The apparatus for this test shall be as described in AASHTO T-96. - B. **Balance or Scale** accurate to 0.1% of test load over the range required for this test. - C. **Sieves** wire sieves as specified on Table 1, conforming to the requirements of AASHTO M 92. - D. **Aggregate Test Report** DOTD 03-22-0745 - E. Lightweight Coarse Aggregate Worksheet Figure 1 ### III. Abrasive Charge The abrasive charge shall be as required in AASHTO T-96. #### IV. Health Precautions Proper equipment and precautions are to be taken whenever hot materials or equipment must be handled. Use container holders or gloves while handling hot containers. Wear eye protection while stirring and weighing materials. ## V. Sample - A. Weight of Test Sample Determination - 1. Dry the entire clean aggregate sample in an oven at a temperature not exceeding 235°F to a constant weight. - 2. To determine the amount of material to use as the test sample first determine the loose unit weight of the lightweight coarse aggregate sample as received in accordance with the procedure described in AASHTO T 19. - 3. Determine the weight of material to be used as the test sample using the following equation: Weightof testsample= Unit Wt.of Aggregate (lbs/cu.ft) x 51.55 Example: Unit weight of coarse aggregate = 35 lbs/cu.ft. Weight of test sample = 35×51.55 = 1804 grams #### B. Test Specimen Preparation - 1. Using fresh material which was not used for the unit weight determination, separate the aggregate into individual size fractions by running over the sieves listed in Table 1. - Determine the appropriate grade by noting which sieves have material retained. The grade listed at the top of the column will correspond to a certain set of sieves represented. ### Example: If 1804 grams produced a grading as follows: 0 grams retained on the 1" sieve 64 grams retained on the 34" sieve 923 grams retained on the 1/2" sieve 700 grams retained on the 3/8" sieve 117 grams passing the 3/8" sieve - then, the lightweight aggregate would be considered a Grade B. - 3. Separate portions of the individual size fractions obtained in V.B.1. of each size fraction needed for the previously determined Grade and recombine into one test specimen using the weight percentages listed in Table 1 ### Example: Since the sample is a Grade B, from Table 1, the test specimen will consist of 50% material retained on the $\frac{1}{2}$ " sieve and 50% retained on the $\frac{3}{8}$ " sieve. 4. Record the weight of the test specimen prior to testing to the nearest gram on the worksheet (Figure 1). TABLE 1 – GRADINGS OF TEST SPECIMEN | SIEVE SIZE (SQU | ARE OPENINGS) | PERCENT OF MA | SS FOR GRADING OF | TEST SPECIMEN | |-----------------|---------------|---------------|-------------------|---------------| | Passing | Retained On | A | В | С | | 1½ in. | 1 in. | 25% | | | | 1 in. | ³⁄4 in. | 25% | | | | ³⁄4 in. | ½ in. | 25% | 50% | | | ½ in. | ³⁄8 in. | 25% | 50% | | | ³⁄8 in. | ⅓ in. | | | 50% | | ⅓ in. | No. 4 | | | 50% | #### VI. Procedure - A. Place the abrasive charge in the Los Angeles abrasion testing machine drum. - B. Place the test specimen in the drum and secure the cover. - C. Rotate the machine at a range of speed from 30 to 33 rpm. The machine shall be rotated for 100 revolutions for all gradings. - D. Remove the abrasive charge from the drum. Then discharge the material from the machine and sieve on a No. 4 sieve in a manner conforming to Section V.a. of DOTD TR 113. - E. Wash the material coarser than the No. 4 sieve by placing in a pan large enough to contain the plus No. 4 material. - F. Fill the pan with water completely covering the material. Stir or agitate until any dust present is in suspension. - G. Remove wash water by pouring over a No. 4 sieve. Repeat the process until the wash water is clear. - H. Dry to constant mass in an oven at a temperature not exceeding 235°F. - I. Record mass to the nearest gram on the worksheet (Figure 1). ### VI. Calculations A. Calculating the portions of the test specimen for its appropriate Grade aggregate. #### Example: For the previous Grade B aggregate with the specimen total mass of 1804g: $$W_T = 1804g$$ $$W_{1/2} = 1804g \times 50\% = 902g$$ $$W_{\%} = 1804g \times 50\% = 902g$$ #### where: W_T = Total mass of the test specimen W_{1/2} = Mass of specimen from portion retained on ½" sieve W_% = Mass of specimen from portion retained on 3%" sieve The difference between the original weight and the final weight of the test sample shall be expressed as a percentage of the original mass of the test sample. This value shall be reported as the percentage of wear, L. B. Calculate the amount of material passing the No 4 after testing as follows: $$C = A - B$$ where: A = Dry mass of graded sample prior to testing B = Dry mass of graded sample after testing C = Dry mass of sample passing No. 4 sieve after washing C. Calculate the percentage of wear, L, as follows: $$L = \frac{C}{A} \times 100$$ A = Dry Weight of graded sample prior to testing B = Dry weight of washed sample after testing C = Weight of sample passing No.4 sieve (A-B) DOTD TR 111-10 Rev. 6/10 Page 4 of 5 # Example: $$L = \frac{301}{1804} \times 100$$ $$L = 0.1669 \times 100$$ $$L = 16.7$$ # VII. Report Report the percent loss to the nearest 0.1%. ## VIII. Normal Reporting Time Normal reporting time is approximately four days. | TEST FOR ABRASION OF LIGHTWEIGHT COARSE AGGGREGATE TR 111 - 09 | TR 111 - 09 | | |---|---|-----------------------| | DATE 1-29-10 | LABORATORY NO. 22- | 22-733349 | | SAMPLE SPLIT NO. 682-H | NAME OF MATERIAL Expanded Clay | | | GRADING B NO. OF SPHERES | 11 NO. OF REVOLUTIONS 100 | | | A = DRY WEIGHT OF GRADED SAMPLE PRIOR TO TESTING, GRAMS, | AS, | | | B = DRY WEIGHT OF WASHED SAMPLE AFTER TESTING, GRAMS, | 1503 | | | C = WEIGHT OF SAMPLE PASSING #4 SIEVE (A-B), GRAMS, | 301 | | | C ÷ A x 100 = A CTUAL PERCENTAGE LOSS (NEAREST 0.1%)_ | 16.7 | | | ACTUAL PERCENTAGE LOSS (NEAREST WHOLE %) | REST WHOLE %) | | | REMARKS Results are within acceptable Limits | eptable Limits | | | TESTED BY GPC | PASS/FAILPass | | | LOOSE UNIT WEIGHT OF AGGREGATE 35.00 | CALCULATION FACTOR 51.55 | | | SAMPLE SIZE CALCULATION | | | | LOOSE UNIT WEIGHT OF AGGREGATE 35.00 | X 51.55 = = TO' | = TOTAL SAMPLE WEIGHT | | TOTAL SAMPLE WEIGHT / 4= | TOTAL SAMPLE WEIGHT / 2 = 902 | , 905 | | FOR GRADING A DIVIDE TOTAL SAMPLE WEIGHT BY 4 TO REPRESENT THE FOUR SIZES AVAILABLE 1, 34, 14, 3/8 INCH FOR GRADING B DIVIDE TOTAL SAMPLE WEIGHT BY 2 TO REPRESENT THE TWO SIZES AVAILABLE 14, 3/8 INCH FOR GRADING C DIVIDE TOTAL SAMPLE WEIGHT BY 2 TO REPRESENT THE TWO SIZES AVAILABLE No. 3, No. 4 | TO REPRESENT THE FOUR SIZES AVAILABLE 1, %, ½, 3/8 INC TO REPRESENT THE TWO SIZES AVAILABLE ½, 3/8 INCH TO REPRESENT THE TWO SIZES AVAILABLE No. 3, No. 4 | _ | | GRADING $A = 12$ SPHERES GRADING $B = 11$ SPHERES | GRADING C = 8 SPHERES | STANDARD NO. OF | | REVOLUTIONS IS 100. | | |